- Calculators are allowed on exam.
- Exact, simplified solutions are required, unless otherwise stated.
- All necessary work to arrive at a solution must be shown. If necessary steps are missing, no credit will be given for the problem.
- When applicable, correct units must be given.
- 1. Find the difference quotient, $\frac{f(x+h)-f(x)}{h}$ for the given functions.

a)
$$f(x) = x^2 + 7x - 4$$

$$b) f(x) = \frac{2}{x+3}$$

2. Rewrite the following equations in standard form by completing the square and state the center and the radius. Graph each circle.

a)
$$x^2 + y^2 + 6x + 2y + 6 = 0$$

b)
$$x^2 + y^2 - 6y - 7 = 0$$

- 3. Given x = 4 is one solution of $x^3 17x + 4 = 0$, algebraically determine all remaining solutions. Leave answers in exact, simplified form.
- 4. Find the complete factorization of $f(x) = 3x^3 10x^2 x + 12$, given $x = \frac{4}{3}$ is a root of f(x).
- 5. For the given rational functions, determine the following:
 - i. Vertical, horizontal, and slant asymptotes.
 - ii. x and y intercepts.
 - iii. Graph the functions, label all asymptotes, intercepts, and at least 2 points on each piece of the graph.

a)
$$f(x) = \frac{2x^2 - 5x + 7}{x - 2}$$

b)
$$f(x) = \frac{x+3}{x^2+2x-8}$$

6. Solve the following logarithmic and exponential equations. Write exact solutions.

a)
$$e^{4x-5} - 7 = 11,243$$

b)
$$7^{2x+1} = 3^{x+2}$$

$$c) \log_3 y + 3\log_3 y^2 = 14$$

$$d) \log_4(2x+1) - \log_4(x-3) = \log_4(x+5)$$

7. The population of Africa was 807 million in 2000, and grew to 1,052 million in 2011. Use the exponential growth model $A(t) = A_0 e^{kt}$ to find the exponential growth function that models this data. In what year will Africa's population reach 2 billion (2,000 million)?

8. The function $T(t) = 13.4 \ln(t) - 11.6$ models the temperature increase, T, in an enclosed vehicle after t minutes when the outside air temperature is between 72°F and 92°F.

a) Find the temperature increase, to the nearest degree, after 15 minutes.

b) Find how long it takes, to the nearest minute, to reach a temperature increase of 35°F.

9. Without the use of a calculator, find the values of the six trigonometric functions at each angle.

a)
$$\frac{\pi}{6}$$

b)
$$\frac{7\pi}{4}$$

c)
$$\frac{2\pi}{3}$$

10. Use the given information to find the exact value of each of the remaining six trigonometric functions.

a)
$$cot\theta = \frac{1}{3}$$
, $\pi < \theta < \frac{3\pi}{2}$

b)
$$sin\theta = \frac{2}{5}, \frac{\pi}{2} < \theta < \pi$$

11. Find θ exactly, where $0 \le \theta < 2\pi$.

a)
$$sin\theta = -\frac{1}{2}$$

b)
$$tan\theta = 1$$

12. Find the amplitude, period, phase shift, vertical shift, and determine if the graph has a reflection. Then graph one period, beginning at the phase shift. Scale the graph using the five key points.

$$a) y = 2\cos(x) + 1$$

$$c) y = -3\cos(x+\pi)$$

13. Use a sum or difference formula to find the exact value of the following:

a)
$$\tan \left(\frac{11\pi}{12}\right)$$

14. Use a half – angle formula to find the exact value of the following.

a)
$$\cos\left(\frac{11\pi}{12}\right)$$

15. If $sin\theta = -\frac{4}{5}$, and $\pi < \theta < \frac{3\pi}{2}$, find

a)
$$\sin 2\theta$$

b)
$$\cos \frac{\theta}{2}$$

16. Solve the following triangles. Round lengths of sides to the nearest tenth and angle measures to the nearest degree.

a) B = 45°, A = 60°, a =
$$\sqrt{6}$$
 b) b = 11, c = 20, A = 37°

b)
$$b = 11, c = 20, A = 37^{\circ}$$

17. Solve each equation on the interval $[0,2\pi)$.

a)
$$\cos(2\theta) = \frac{1}{2}$$

a)
$$cos(2\theta) = \frac{1}{2}$$
 b) $cos(2\theta) + sin(\theta) = 0$

c)
$$2\sin^2\theta + \cos\theta = 1$$

18. Find the polar coordinates for each rectangular point.

a)(-2,-2)

b) (7,0)

c)(0,-9)

19. Find the rectangular points for each polar coordinate.

 $a)\left(4,\frac{5\pi}{4}\right)$

b) $\left(\frac{1}{2}, \frac{2\pi}{3}\right)$

20. Convert the rectangular equations into a polar equation.

a)
$$x^2 + y^2 = 16$$
 b) $3x + 8y = 5$

b)
$$3x + 8y = 5$$

21. The distance, a, across a lake is unknown. To find the distance, a surveyor took the measurements shown in the figure. What is the distance across the lake? Round to the nearest whole number.

22. Find the distance from A to C in the given picture. Round to the nearest yard.

Math 1250G Final Exam Review

Updated Fall 2022

23. Suppose you go for a hike on a bearing of *S* 31° W for 2.3 miles. Then you turn 90° clockwise and hike 3.5 miles on a bearing of *N* 59° W. At that time, what is your bearing from your start point? Round to the nearest degree.

- 24. Two fire lookout stations are 13 miles apart, with station B directly east of station A. Both stations spot a fire. The bearing of the fire from station A is *N* 35° E and the bearing of the fire from station B is *N* 49° W . How far to the nearest tenth of a mile, is the fire from station B?
- 25. Let **v** be the vector from initial point $P_1 = (-3,2)$ to terminal point $P_2 = (-5,-1)$. Write **v** in terms of **i** and **j**.
- 26. Let $\mathbf{u} = 3\mathbf{i} 2\mathbf{j}$ and $\mathbf{v} = -4\mathbf{i} + 4\mathbf{j}$. Find the vector $\mathbf{u} + \mathbf{v}$.
- 27. Given $\mathbf{v} = 5\mathbf{i} + \mathbf{j}$ and $\mathbf{w} = \mathbf{i} + 5\mathbf{j}$, find the following.
 - a. $v \cdot w$
 - b. $\boldsymbol{v} \cdot \boldsymbol{v}$
- 28. Given the equation of the ellipse, determine the center, vertices, and foci. Make a graph, labeling all points found.

a)
$$\frac{x^2}{9} + \frac{y^2}{49} = 1$$

b)
$$\frac{(x-2)^2}{25} + \frac{(y+3)^2}{4} = 1$$

29. Given the equation of the hyperbola, determine the center, transverse axis, vertices, asymptotes, and foci. Make a graph, labeling all points found.

a)
$$\frac{x^2}{16} - \frac{y^2}{25} = 1$$

b)
$$\frac{(y-4)^2}{16} - \frac{(x+2)^2}{9} = 1$$

30. A satellite dish is in the shape of a parabolic surface. Signals coming from a satellite strike the surface of the dish and are reflected to the focus, where the receiver is located. The satellite dish has a diameter of 10 feet and a depth of 2 feet. How far from the base of the dish should the receiver be placed?

Solutions

1. a.
$$2x + h + 7$$

b.
$$\frac{-2}{(x+3)(x+h+3)}$$

2. a.
$$(x+3)^2 + (y+1)^2 = 4$$

a.
$$(x+3)^2 + (y+1)^2 = 4$$
 Center $(-3,-1)$ radius = 2

b.
$$x^2 + (y-3)^2 = 16$$
 Center (0,3) radius = 4

$$radius = 4$$

3.
$$\{-2+\sqrt{5},-2-\sqrt{5}\}$$

4.
$$f(x) = (3x - 4)(x - 3)(x + 1)$$

5. Vertical Asymptote: x = 2, Horizontal Asymptote: None, Slant Asymptote: y = 2x - 1

Graph passes through: (-3, -8), (0, -3.5), (1, -4), (3,10), (4, 9.5), (7, 14)

Vertical Asymptotes: x = -4, x = 2, Horizontal Asymptote: y = 0, Slant Asymptote: Graph passes through: (-8, -.125), (-6, -.1875), (-3, 0), (0, -.375), (6, .225), (12, -.375)

6. a.
$$x = \frac{ln(11,250) + 5}{4}$$

.09375)

b.
$$x = \frac{2ln(3) - ln(7)}{2ln(7) - ln(3)}$$

c.
$$y = 9$$

d.
$$x = 4$$

- Equation: $A(t) = 807e^{0.0241t}$ 7. Africa's population will reach 2 billion in 2038.
- 8. The temperature increase after 15 minutes is 25°F.
 - It will take 32 minutes to reach a temperature increase of 35°F.

9.
$$\sin \frac{\pi}{6} = \frac{1}{2}$$
, $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $\tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$, $\csc \frac{\pi}{6} = 2$, $\sec \frac{\pi}{6} = \frac{2\sqrt{3}}{3}$, $\cot \frac{\pi}{6} = \sqrt{3}$

b.
$$\sin \frac{7\pi}{4} = -\frac{\sqrt{2}}{2}$$
, $\cos \frac{7\pi}{4} = \frac{\sqrt{2}}{2}$, $\tan \frac{7\pi}{4} = -1$, $\csc \frac{7\pi}{4} = -\sqrt{2}$, $\sec \frac{7\pi}{4} = \sqrt{2}$, $\cot \frac{7\pi}{4} = -1$

c.
$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$$
, $\cos \frac{2\pi}{3} = -\frac{1}{2}$, $\tan \frac{2\pi}{3} = -\sqrt{3}$, $\csc \frac{2\pi}{3} = \frac{2\sqrt{3}}{3}$, $\sec \frac{2\pi}{3} = -2$, $\cot \frac{2\pi}{3} = \frac{\sqrt{3}}{3}$

Math 1250G Final Exam Review

Updated Fall 2022

10.
$$cot\theta = \frac{1}{3}$$
, $tan\theta = 3$, $sin\theta = \frac{-3\sqrt{10}}{10}$, $cos\theta = \frac{-\sqrt{10}}{10}$, $csc\theta = \frac{-\sqrt{10}}{3}$, $sec\theta = -\sqrt{10}$

b.
$$sin\theta = \frac{2}{5}$$
, $cos\theta = \frac{-\sqrt{21}}{5}$, $tan\theta = \frac{-2\sqrt{21}}{21}$, $csc\theta = \frac{5}{2}$, $sec\theta = \frac{-5\sqrt{21}}{21}$, $cot\theta = \frac{-\sqrt{21}}{2}$

11. a.
$$\left\{\frac{7\pi}{6}, \frac{11\pi}{6}\right\}$$
 b. $\left\{\frac{\pi}{4}, \frac{5\pi}{4}\right\}$

12. a. Amplitude: 2 Vertical Shift: Up 1 Period:
$$2\pi$$
 Reflection: None Phase Shift: None

Key Points:
$$(0,3)$$
, $(\frac{\pi}{2},1)$, $(\pi,-1)$, $(\frac{3\pi}{2},1)$ $(2\pi,3)$

b. Amplitude: 1 Vertical Shift: Down 2 Period:
$$\pi$$
 Reflection: None Phase Shift: $\frac{\pi}{6}$ Key Points: $\left(\frac{\pi}{6}, -2\right), \left(\frac{5\pi}{12}, -1\right), \left(\frac{2\pi}{3}, -2\right), \left(\frac{11\pi}{12}, -3\right)(\frac{7\pi}{6}, -2)$

c. Amplitude: 3 Vertical Shift: None Period:
$$2\pi$$
 Reflection: Yes Phase Shift: $-\pi$ Key Points: $(-\pi, -3), \left(-\frac{\pi}{2}, 0\right), (0,3), \left(\frac{\pi}{2}, 0\right)(\pi, -3)$

13. a.
$$\tan\left(\frac{11\pi}{12}\right) = \frac{1-\sqrt{3}}{1+\sqrt{3}} = -2+\sqrt{3}$$
 b. $\sin 105^\circ = \frac{\sqrt{6}+\sqrt{2}}{4}$

14. a.
$$\cos\left(\frac{11\pi}{12}\right) = -\frac{\sqrt{2+\sqrt{3}}}{2}$$
 b. $\tan(15^\circ) = 2 - \sqrt{3}$

15. a.
$$\sin 2\theta = \frac{24}{25}$$
 b. $\cos \frac{\theta}{2} = -\frac{\sqrt{5}}{5}$

16. a.
$$A = 60^{\circ}, B = 45^{\circ}, C = 75^{\circ}$$
 b. $a = 13.0, b = 11, c = 20$ $A = 37^{\circ}, B = 31^{\circ}, C = 112^{\circ}$

Math 1250G Final Exam Review

Updated Fall 2022

17. a.
$$\left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$$

b.
$$\left\{\frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}\right\}$$

c.
$$\left\{0, \frac{2\pi}{3}, \frac{4\pi}{3}\right\}$$

18. a.
$$(2\sqrt{2}, \frac{5\pi}{4})$$

c.
$$(9, \frac{3\pi}{2})$$

19. a.
$$\left(-2\sqrt{2}, -2\sqrt{2}\right)$$

b.
$$\left(-\frac{1}{4}, \frac{\sqrt{3}}{4}\right)$$

20. a.
$$r = 4$$

b.
$$r = \frac{5}{3\cos\theta + 8\sin\theta}$$

25.
$$v = -2i - 3j$$

26.
$$v = -i + 2j$$

27. a.
$$v \cdot w = 10$$

b. $v \cdot v = 26$

28. a. Center:
$$(0,0)$$
, Vertices: $(3,0)$, $(-3,0)$, $(0,7)$, $(0,-7)$, Foci: $(0,2\sqrt{10})$, $(0,-2\sqrt{10})$ b. Center: $(2,-3)$, Vertices: $(7,-3)$, $(-3,-3)$, $(2,-1)$, $(2,-5)$ Foci: $(2+\sqrt{21},-3)$, $(2-\sqrt{21},-3)$

29. a. Center:
$$(0,0)$$
, Horizontal Transverse Axis, Vertices: $(4,0)$, $(-4,0)$ Foci: $(\sqrt{41},0)$, $(-\sqrt{41},0)$ b. Center: $(4,-2)$, Vertical Transverse Axis, Vertices: $(4,2)$, $(4,-6)$ Foci: $(4,3)$, $(4,-7)$

30. The receiver should be placed $3\frac{1}{8}$ feet from the base of the dish.